- infinite dimensional cohomology
- матем.бесконечномерная когомология
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Tate cohomology group — In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were invented by John Tate, and are used in class field… … Wikipedia
Galois cohomology — In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group G associated to a field extension L / K acts in a natural way… … Wikipedia
Projective unitary group — In mathematics, the projective unitary group PU( n ) is the quotient of the unitary group U( n ) by the right multiplication of its center, U(1), embedded as scalars.Abstractly, it is the isometry group of complex projective space, just as the… … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) … Wikipedia
Classifying space for U(n) — In mathematics, the classifying space for the unitary group U(n) is a space B(U(n)) together with a universal bundle E(U(n)) such that any hermitian bundle on a paracompact space X is the pull back of E by a map X → B unique up to homotopy. This… … Wikipedia
Orthogonal group — Group theory Group theory … Wikipedia
Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… … Wikipedia
CW complex — In topology, a CW complex is a type of topological space introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still… … Wikipedia
Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines … Wikipedia
Boundedly generated group — In mathematics, a group is called boundedly generated if it can be expressed as a finite product of cyclic subgroups. The property of bounded generation is also closely related with the congruence subgroup problem (see harvnb|Lubotzky|Segal|2003) … Wikipedia